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1. Introduction

We thank the discussants for their thoughtful examination of our paper. Their discussion

addresses some important points about assessing model fit with posterior predictive checks. It

also investigates the ability of the horseshoe Markov random field (HSMRF) models to detect

rapid changes in effective population size. In what follows we provide some commentary on

the discussants’ results and offer some additional examples that expand on their findings.

2. Posterior Predictive Checks

We agree that posterior predictive checks are an important part of assessing the goodness

of fit of particular models. These checks can be used in addition to model selection criteria

to probe model adequacy. Posterior predictive checks are based on examining predictive

distributions of test statistics (or discrepancy measures more generally). However, we argue

that in our phylodynamic context most test statistics and discrepancy measures applied to

the entire data set will result in similar goodness of fit among competing models, and we

show this is especially true when using statistics based on sequence data. We suggest that

locally-targeted test statistics may be more informative for assessing model adequacy when

such statistics are available.

The discussants provided examples for fixed coalescent times that used the total tree length

and the time to most recent common ancestor (TMRCA) as test statistics. The differences in

posterior predictive p-values among the models were small for these metrics. They mention

that other meaningful test statistics may offer better ability to measure model adequacy and

to discriminate among alternative models. We agree with this statement and think that it

would be more informative to use discrepancy measures that target segments of time when

population trends display specific features of interest. For example, the timing of the start of

the epidemic and the period of increase were of most interest in our analysis of the HCV data.
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A set of custom discrepancy measures that target such specific time periods would allow for

better probing of the adequacy of the reconstructed effective population size trajectory in

those regions of interest.

We demonstrate the effectiveness of such local discrepancy measures on a set of simulated

coalescent times. We use a piecewise constant effective population size trajectory that ex-

hibits a rapid change in population size. The scenario has a population size of 1.0 between

times 0 and 4 and size 0.1 after time 4, where time is in units before the present. We

simulated coalescent times using 500 samples, where 50 were sampled at time 0 and the

remaining 450 sampled uniformly between times 0 and 8. We used a grid with 100 grid

cells and parameterized the models following methods described in the Web appendices.

The relatively large sample size and uniform sampling allowed us to make more distinct

comparisons among methods.

For global application to the entire data set, we used the negative log-likelihood (NLL) for

coalescent times as a discrepancy measure, which depends on both the parameters and the

data. Note that we also investigated the Kolmogorov-Smirnov statistic developed by Karcher

et al. (2019) for coalescent times, and the TMRCA, but these gave similar results to the NLL

so we did not pursue them further. For the local discrepancy measures, we used the NLL and

the proportion of coalescent (PCoal) events among genealogy lineages present during the k

consecutive grid cells forming time interval [xh, xh+k]. Here PCoalxh,xh+k
= cxh,xh+k

/(nxh
+

mxh,xh+k
), where xis are grid cell boundaries, nxh

is the number of lineages at time xh,

and cxh,xh+k
and mxh,xh+k

are the number of coalescent events and number of new samples

during the time period xh to xh+k, respectively, for h ∈ {1, . . . , H + 1− k}. The discrepancy

measure NLLxh,xh+k
is the coalescent log-likelihood calculated for k consecutive grid cells

[xh, xh+1], · · · , [xh+k−1, xh+k]. These discrepancy measures can be calculated for individual

grid cells or for a sequence of grid cells. We applied the NLL to three consecutive grid cells
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covering the times from 4.0 to 4.24, which in our simulations is the period right before the

population size change. We applied the PCoal statistic to the single grid cell covering the

time period of 4.0 to 4.08. We drew 1,000 random samples from the posterior distribution

for each model. For each draw, we simulated a posterior predicted set of coalescent times

and calculated each discrepancy measure for the observed and replicated data.

The global NLL discrepancy measure showed little difference among the models and in all

cases showed satisfactory performance (Figure 1). Recall that posterior predictive p-values

close to 0.5 indicate adequate performance. However, both the NLL and PCoal statistics

applied to the specific time periods of interest showed that the GMRF models and the

HSMRF-2 model did not perform very well. The HSMRF-1 model was satisfactory for the

local NLL statistic but was not really adequate for the PCoal statistic, although it was

much better than the other methods. These results indicate that posterior predictive checks

based on locally-targeted discrepancy measures can provide useful information about model

adequacy for specific time periods of interest.

[Figure 1 about here.]

The discussants mentioned the possibility of using posterior predictive checks based on

sequence data. We worry that the sequence data will generally be far removed from the effects

of the tree prior. Namely, variation in the rate of molecular evolution along branches may

obscure differences that exist between the models in inferred divergence times. To investigate

the applicability of sequence-based posterior predictive checks, we thus focus on the HCV

example where the molecular clock rate is fixed and the coalescent times should be most

directly linked to patterns of variation in the alignment. We employ five different posterior

predictive checks to this dataset using the posteriors for the HSMRF and GMRF models

(of both first and second order). The multinomial test statistic of Goldman (1993), M,

summarizes the diversity of site patterns in the alignment. The average number of distinct
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nucleotides observed at a site in the alignment, also called the “biochemical diversity,” BCD

(Lartillot et al., 2007), is a measure of the overall variability in the sequence data and is

therefore (somewhat indirectly) related to the overall tree length. The proportion of invariant

sites, PI, observed in an alignment, is a summary statistic related to Watterson’s estimator

of the effective population size. Tajima’s D statistic (Tajima, 1989), D, is sensitive to the

relative branch lengths leading to tips compared to more deeply nested branches. The number

of “singleton” sites, S, in the alignment, sites where a single sampled sequence differs from

all others, is a measure of how long the tip branches of the tree are (as these sites are most

likely the result of a single mutation along a terminal branch).

Applied to the HCV dataset, all five statistics produce very similar model adequacy

results across all four models (Figure 2). Unfortunately, with our sequence-based posterior

predictive checks it is hard to target specific regions of the coalescent trajectory. Therefore, we

remain skeptical about usefulness of posterior predictive checks based on sequence alignment

summary statistics.

[Figure 2 about here.]

3. Detection of Rapid and Gradual Changes in Population Size

In Section 3, the discussants investigated the ability of the GMRF and HSMRF models to

detect rapid changes in population size. They did this by testing whether the models could

distinguish between the true rapidly-changing trajectory and ones shifted in time by varying

amounts. The HSMRF-1 model did the best at capturing the true trajectory for the scenarios

they tested. Their results support our finding from simulated data that HSMRF-1 is more

effective at recovering rapid changes in effective population size than the other methods we

investigated.

We expand on the discussants’ results with simulated examples that allow us to see
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behaviors of different models under periods of gradual change and periods of rapid change.

We use a set of effective population size trajectories similar to the birth-rate trajectories used

by Magee et al. (2019) for investigating the ability of HSMRF birth-death models to capture

slow and fast changes in rates. These are 1) a constant population size of 0.55, 2) a piecewise

constant population size of 1.0 between times 0 and 4 and 0.1 after time 4, 3) a combination

of constant population size and log-linearly changing population size, where population size

is 1.0 between time 0 and 2.5, log-linearly decreasing between times 2.5 and 5.5, and 0.1

after that, and 4) a log-linearly decreasing population size from 1.0 to 0.1 between times

0 and 8 and constant at 0.1 after that. We simulated coalescent times using 500 samples,

where 50 were sampled at time 0 and the remaining 450 sampled uniformly between times 0

and 8. We used a grid with 100 grid cells and parameterized the models following methods

described in the Web appendices.

We show results from a single set of simulated data for each scenario that produced

behaviors representative of those seen across multiple simulations (Figure 3). For the constant

trajectory, we see that the GMRF models of both orders resulted in less variable estimated

trajectories and narrower credible intervals than the corresponding HSMRF models of the

same order. This is expected behavior because the HSMRF models pay the price for their

additional flexibility. The piecewise constant trajectory has an instantaneous jump at time

4 that was best captured by the HSMRF-1 model and next best by the HSMRF-2 model.

The GMRF models with their single variance parameter controlling the magnitude of the

increments of log effective population size have to increase this variance to make the jump at

the expense of increasing variance everywhere else along the trajectory. In contrast, the local

flexibility of the HSMRF models allows for large jumps in some places and small variation in

others. For the log-linear-constant trajectory and the log-linear trajectory, the models of the

same order perform similarly, with the order-2 models best capturing the period of log-linear
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population change. This is expected because the order-2 models produce piecewise-linear

trajectories. One feature to note is the stair-stepping behavior of the order-1 models over the

periods of log-linear change in population size, which is more pronounced with the HSMRF

model. This behavior follows from the piecewise-constant trajectories generated by the order-

1 models. The more pronounced stair-stepping of the HSMRF-1 models is a result of the

shrinkage properties of the horseshoe priors. The HSMRF-1 priors will favor periods of small

change followed by periods of rapid change when population change is relatively rapid, but

this behavior will be less pronounced in periods of gradual population change. However, we

have found that this stair-stepping behavior is typically not problematic when one considers

the coverage of the credible intervals. These simulated examples provide evidence that rapid

changes in effective population sizes are best captured by HSMRF models, and while they

may be unnecessarily flexible in situations with constant or gradually changing population

sizes, they can still provide reliable estimates when uncertainty measures are considered.

[Figure 3 about here.]
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Figure 1. Posterior predictive checks for first- and second-order Gaussian Markov random
field (GMRF) and horseshoe Markov random field (HSMRF) models for a piecewise-constant
effective population size trajectory with simulated coalescent times. Top row shows the true
effective population size trajectories that generated the data (dashed line), posterior medians
of estimated trajectories (solid line) and associated 95% Bayesian credible intervals (shaded
band). Remaining rows show posterior predictive test values for observed and replicated
data and associated one-sided posterior predictive p-values for overall negative log-likelihood
(NLL), negative log-likelihood for grid cells between time 4.0 and 4.24 (NLL4,4.24), and the
proportion of lineages resulting in coalescent events in the grid cell covering time 4.0 to 4.08
(PCoal4,4.08). The vertical bars in the plots for PCoal4,4.08 show the test statistic values for
the observed data.
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Figure 2. Posterior predictive model checks using sequence data for first- and second-order
Gaussian Markov random field (GMRF) and horseshoe Markov random field (HSMRF)
models. Predictive distributions are plotted as histograms and the true values of the test
statistics are shown as vertical lines. The test statistics are the multinomial test statistic
(M), the biochemical diversity (BCD), the proportion of invariant sites (PI), Tajima’s D
(D), and the number of singleton sites (S). Posterior predictive p-values are shown for each
model and test.
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Figure 3. Estimated trajectory examples produced by the first- and second-order Gaussian
Markov random field (GMRF) and horseshoe Markov random field (HSMRF) models for four
different simulation scenarios demonstrating various rates of change in effective population
size. Scenarios are a) Constant (CN), b) Piecewise-Constant (PC), c) Linear-Constant (LC),
and d) Linear (LN), where linearity is on the natural log scale. Results for all models within
a particular scenario are for the same set of simulated data. Shown are the true effective
population size trajectories that generated the data (dashed lines), posterior medians of
estimated trajectories (solid lines) and associated 95% Bayesian credible intervals (shaded
bands).


